Notes on Jumping Ability and Thermal Biology of the Enigmatic Anole
Chamaeleinorops barbouri

KELLAR AUTUMN1 AND JONATHAN B. LOSOS.2 1Museum of Vertebrate Zoology, 3101 Valley Life Sciences Bldg., University of California, Berkeley, California 94720, USA, E-mail: gecko@socrates.berkeley.edu, and 2Department of Biology, Campus Box 1137, Washington University, St. Louis, Missouri 63130, USA, E-mail: losos@biodec.wustl.edu.

By any criterion, Chamaeleinorops barbouri, the enigmatic terrestrial anole lizard from the mountains of Hispaniola, is remarkable. Unlike other anoles, C. barbouri is almost strictly terrestrial, lives in leaf litter, moves primarily by short hops, and has no stereotyped display behavior (Jenssen and Feely, 1991; Flores et al., 1994). Morphologically, C. barbouri possesses interzygapophyseal wings that are unique among tetrapods and the function of which is poorly understood (Forsgaard, 1983). The phylogenetic relationships of C. barbouri are also uncertain. Williams (1969) proposed that Chamaeleinorops is the last vestige of a pre-Anolis radiation and thus constitutes the sister-group to the genus Anolis. By contrast, recent biochemical studies suggest that C. barbouri arose from within Anolis (Wyles and Gorman, 1980; Hedges and Burnell, 1990; Hass et al., 1993; Jackman et al., in press; but see Case and Williams, 1987) and, consequently, that novel features of C. barbouri are relatively recently derived.

Field work in the Dominican Republic in 1989 and 1991 presented the opportunity to investigate several aspects of Chamaeleinorops biology. The hypothesis that the vertebral structure of C. barbouri is an adaptation for jumping locomotion (Forsgaard, 1983) was tested by comparing its jumping ability to that of other anoles (Losos, 1990a; Losos et al., 1991). Although thermal biology of Anolis has been extensively studied, only data on field body temperatures are available for C. barbouri (Flores et al., 1994). Depending on phylogenetic relationships of Chamaeleinorops, more extensive data on its thermal biology could shed light either on the ancestral condition for Anolis or the extent to which occupation of a novel microhabitat is accompanied by evolution in thermal biology.

Lizards were collected near Cabral, Provincia de Barahona, República Dominicana in August of 1989 and 1991. Jumping abilities were measured in 1991. Animals were transported to the University of California, Davis, where they were maintained for two weeks in plastic shoeboxes in which they were misted every 1–2 days and fed crickets.

Performance measurements were conducted by placing lizards on a flat board covered with a rough rubber surface 28 cm above the ground and inducing them to jump toward a pile of sticks by a tap to the tail. This procedure was repeated twice at hourly intervals; the longest jump was considered the maximum for each individual (protocol following methods in Losos [1990a]; note that some lizards in that study also were maintained in captivity prior to performance testing). Jumping measurements were conducted at a room temperature of 30°C. We chose 30°C because four other forest anoles, which have median field body temperatures almost identical to the mean of C. barbouri (26.1–26.4°C vs. 26.0°C), have optimal performance temperatures for sprinting that range from 28–30°C (van Berkum, 1986; Flores et al., 1994).

For comparative purposes, we report jumping capability of a similar-sized lizard, Anolis auratus from Barro Colorado Island, Panama. Jumping ability for A. auratus was measured as described above. For all lizards, snout–vent length (SVL), mass, and hindlimb length (from tip of the fourth toe to insertion of the leg into the body wall) were recorded.

For the physiological experiments in 1989, lizards were transported to the Museum of Vertebrate Zoology, University of California, Berkeley, where they were maintained in plastic shoeboxes as described above. Physiological measurements proceeded in chronological order as described below, from 22 August to 5 September, 1989. Preferred body temperature (Tp) was measured by placing lizards in a meter-long thermal gradient heated at one side by a 250 W infrared lamp and cooled by its placement within a walk-in refrigerator. Minimum and maximum temperatures on the gradient, measured by a copper–lidz mold to the shape of Anolis cristatellus, were 16.0°C and 45.3°C. We define Tm, a lizard as cloacal temperature (taken with a Bailey BAT-12 thermocouple reader) after one hour on the gradient. Critical thermal minimum (Tcm) was determined by cooling lizards in a refrigerator (6.1°C; methods following Spellerberg [1972]). Lizards were placed on their backs every 30 sec until they could not right themselves. Lizards took about 2–3 min to cool from room temperature to Tcm, at which time cloacal temperatures were recorded as above. Critical thermal maximum was determined by heating lizards under a 250 W infrared heat lamp until the loss of the righting response (following Spellerberg, 1972). In all but one case, lizards took 10–16 min to heat from room temperature to Tcm, at which time cloacal temperatures were taken with a Wesco thermometer. Due to its small size, one lizard took only 8.5 min to heat to Tcm.

Anolis auratus is slightly longer and heavier than Chamaeleinorops barbouri and has slightly longer hindlegs, but has considerably greater jumping ability (Table 1). In comparison to 16 species of anoles for which data have previously been presented (Losos, 1990a; Losos et al., 1991), both species have relatively long hind legs for their size: based on a regression of hindlimb length vs. SVL (both variables in-transformed) for all 18 species (data for C. barbouri from 1991 specimens), the hindlimbs of C. barbouri are 105.0% of the predicted value and those of A. auratus are 112.0% of the predicted value. Nonetheless, relative to its SVL, C. barbouri can jump only 80.6% of its expected ability, whereas A. auratus can jump 110% of its expected ability. Based on a multiple regression including both SVL and hindlimb length as independent variables, A. auratus can jump 99.3% of its expected ability, but C. barbouri can jump only 76.4% as well as expected.

In the preferred temperature experiments, four individuals moved to the cool end of the thermal gradient and remained there, whereas the nine others chose an
Table 1. Morphological, physiological, and performance measurements (x ± 1 standard error).

<table>
<thead>
<tr>
<th></th>
<th>Chamaeleinops barbouri</th>
<th>Anolis aurotus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1989</td>
<td>1991</td>
</tr>
<tr>
<td>N</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>SVL (mm)</td>
<td>35.4 ± 0.6</td>
<td>38.8 ± 0.6</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>1.1 ± 0.1</td>
<td>1.3 ± 0.1</td>
</tr>
<tr>
<td>Hindlimb length (mm)</td>
<td>27.3 ± 0.5</td>
<td>28.3 ± 0.3</td>
</tr>
<tr>
<td>Jump distance (cm)</td>
<td>40.1 ± 1.6</td>
<td>55.9 ± 0.9</td>
</tr>
</tbody>
</table>

intermediate position. We report the mean T₀ both including and excluding these four lizards. Mean T₀ of all 13 C. barbouri was 24.1 ± SE 0.7 (range 20.0–27.7 C). Mean of the nine lizards that regulated their temperature in the intermediate portion of the gradient was 25.2 ± SE 0.7 (range 22.0–27.7 C). Cₜₘᵦₜ of 12 lizards was 17.1 ± SE 0.3 (range 10.1–13.8 C) and Cₜₘₐₓ of 12 lizards was 34.9 ± SE 0.6 (range 30.4–37.1 C).

Previous studies have found that most of the variation in jumping capability among anoles can be explained by body size and hindlimb length (Losos, 1990a; Losos et al., 1991). Indeed, the regression of jumping ability on size and hindlimb length, based on data from 16 previously studied species, perfectly predicted the jumping ability of A. aurotus. However, the jumping ability of C. barbouri is 24% lower than its value predicted by this regression. Thus, the data give no support to the hypothesis (Forsgaard, 1983) that the vertebral structure of Chamaeleinops is related to enhanced maximal jumping abilities. In part, the relatively short jumping distance of C. barbouri probably results from its spindly legs and reduced limb musculature (a similar situation exists for the anole Polychrus guttatus [Losos, 1990b]).

We found that the critical thermal minimum and maximum for C. barbouri is similar to that for other forest-dwelling anoles (e.g., Hertz, 1979; van Berkum, 1986). In addition, like other anoles (e.g., Huey and Webster, 1976), C. barbouri shows a reasonably close correspondence between preferred and field body temperatures. However, C. barbouri is unusual in maintaining a body temperature (x = 26.0) well above ambient air temperature (x = 22.3) despite living in closed forest with little access to sunlit areas (Flores et al., 1994); the mechanism for this capability remains to be elucidated.

While handling lizards as part of the physiology experiments, we noticed that lizards often became immobile and adopted a vertically compressed posture. Simultaneously, the abdomen was extended downward, giving the lizard a flat and rounded appearance in profile. Subsequently, similar behavior was observed in the field. Dwarf chameleons of the genus Brookesia, which superficially look like C. barbouri, adopt a somewhat similar behavior (Raxworthy, 1991), which may serve to enhance crypticity or make ingestion by a predator difficult.

Much remains to be discovered about C. barbouri. Aspects of its ecology and behavior are unique among anoles (Jenssen and Feely, 1991; Flores et al., 1994) and its unusual morphology continues to defy adaptive and functional explanation. As we have shown, however, laboratory measurements of thermal physiology are similar to other forest-dwelling anoles.

Acknowledgments.—We thank K. de Queiroz, C. Giorni, G. C. Mayer, A. Schuler and A. Yarmo for assistance in collecting specimens, P. Hertz for providing lizard models, R. Huey for information on anole thermal biology, B. K. Sullivan and two anonymous reviewers for constructive suggestions on a previous draft, E. A. Bautista, J. Ostenwalder, Parque Zoológico Nacional (ZooDom), and the Departamento de Vida Silvestre for assistance in planning and conducting this research and permission to collect specimens, the National Science Foundation (DEB 9318642) for support and particularly G. Flores for advice and information. Research on A. aurotus was conducted while the junior author held a pre-doctoral Fellowship from the Smithsonian Tropical Research Institute.

Literature Cited


———. 1990b. The evolution of form and function:
Reproductive Activity in Tropidurus etheridgei in the Semiarid Chaco of Salta, Argentina

FELIX B. CRUZ, Instituto de Herpetología-Fundación Miguel Lillo-CONICET, Miguel Lillo 251, 4000 Tucumán, Argentina, E-mail: postmaster@cruzp.unt.edu.ar

The timing of reproductive events in many reptiles is related to environmental factors, such as photoperiod (Clerke and Alford, 1993), temperature (particularly in temperate climates; Fitch, 1970), or rainfall (tropical environments; Barbault, 1976; Fitch, 1982; Magnusson, 1987). In some lizard assemblages, more than a single reproductive type can be found at one locality (James and Shine, 1985, 1988; Vitt, 1986, 1990; Clerke and Alford; 1993). Fitch (1982) suggested that rainfall influenced the timing of egg deposition. Vitt (1986), however, found that the timing of reproduction, even in the same habitat, is not always associated with precipitation. Dunham and Miles (1985) suggested that phylogenetic constraints and biogeographic history may play a major role in shaping reproductive patterns. Some species have broad geographical distributions and studies have demonstrated phenotypic plasticity in reproduction for such wide-ranging species (Seigel and Ford, 1991; van Marken Lichtenbelt and Albers, 1993).

Tropidurus etheridgei is a medium-sized terrestrial to arboREAL lizard (male SVL = 115 mm) of the torquatus group (Rodrigues, 1987), distributed in the generally dry habitats from the cerrado to the chacoan region of Brazil, Paraguay, Bolivia, and Argentina (Ceí, 1993). In cerrado habitat they consume flowers and insects, predominately ants (Vitt, 1991).

Vitt (1991) described the reproductive characteristics of this species but did not include data on the length of fat body and reproductive cycles, nor document reproductive activity throughout the year. The objectives of the present study were to: (1) describe the reproductive and abdominal fat body cycles of T. etheridgei, (2) relate some reproductive parameters to environmental factors, and (3) compare the results obtained herein with congenic and sympatric species.

The study site was on a ranch called “Pozo Largo” (25°05’5”S, 64°11’W), 8 km S and 12 km E from J. V. González, in the province of Salta, Argentina. The site is characterized by an intense rainy season (96.5% of the precipitation falls between October and April); mean annual rainfall is 553 mm (Bianchi and Yáñez, 1992). Temperature and photoperiod vary seasonally, but are less pronounced as is typical of temperate-subtropical climates (Bucher, 1980). The vegetation is a dry thorn forest mainly composed by Aspidosperma, Schinopsis, and Prosopis species (Morello and Saravia Toledo, 1959; Bucher, 1980). The type of habitat belongs to the chacoan occidental district (Cabrera and Willink, 1980).

Lizards were obtained during dry and wet seasons over a period of 19 mo using a combination of seven drift fence pit-fall arrays and 45 pits along side an internal path in the study area (Cruz et al., 1993). Additional individuals were obtained by hand or shooting. After killing, specimens were fixed in 10% formaldehyde and later transferred to 75% ethanol. The material was deposited in the collection of the Instituto de Herpetología, Fundación Miguel Lillo, Tucumán, Argentina.

Reproductive stages were based on occurrence of enlarged (yolked) follicles and oviducal eggs in females, and enlarged testes and epididymides in males. The number of enlarged follicles and oviducal eggs was used to estimate clutch size. The concurrent occurrence of enlarged ovarian follicles and oviducal eggs was considered to be evidence that more than one clutch was produced each year. Abdominal fat bodies were weighed to the nearest 0.01 g. Snout–vent length (SVL), head dimensions (length, width, and height), and testes were measured with electronic vernier caliper to the nearest 0.01 mm. In most cases only the left testis was measured, except when the left tract was damaged.

Males were larger than females in SVL (Fig. 1): Males = 71.7 ± 1.1 mm, N = 101; females = 66.7 ± 0.79 mm, N = 95; P < 0.05). Head size (length, width, and height) also was significantly larger in males (Table 1). The relationship between head width and SVL was positive in both sexes, but the slope in males was more pronounced than in females and males had wider heads at the same SVL (Fig. 2). Adult males, (those > 55.9 mm SVL) exhibited dark brown throats and femoral patches, and older males have patches ventrally as well.

Tropidurus etheridgei was active year-round; however, during the dry season (May to September) captures were less frequent than in the wet season (October through April). Fig. 3 shows the capture frequency by